CIE 1931 chromaticity diagram

Austen Clark
University of Connecticut
FIGURE 5.18 Color-matching data of W. D. Wright, plotted in the unit-coordinate system. Note that the primaries are different from those of Figure 5.17, but that the curves appear similar. (Wright, 1946, p. 130.)
Fig. 3.11 The x, y chromaticity diagram of the I.C.I. system. The abscissa is the ratio of the tristimulus value X to the sum of all three (X + Y + Z). The ordinate is the ratio of Y to this sum. The parts of the spectrum locus are identified by wavelength in millimicra. The region bounded by this locus and the straight line (purple border) joining its extremes represent all chromaticities producible by actual stimuli. The central curved line represents the chromaticities of the complete radiator and is called the Planckian locus. Points on this locus are identified by the temperature of the radiator expressed on the Kelvin scale. (From Judd, 1951.)
Fig. 1(5.12.2). Change in apparent color of eight stimuli (R, O, Y, G, C, B, V, M) of fixed CIE chromaticity, as the equal luminances of test stimulus and surround are decreased together in steps from A (6300 td) to F (0.7 td). An additional observation with zero luminance of the surroundings and a low luminance (0.7 td) of the test stimulus is also included (point Z). For the stimulus R, the chromaticities for the different luminance levels are labeled in order of decreasing luminance $A, B, C, D, E, F,$ and Z (Hunt, 1953).